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similar features. Both are triclinic with two substituted 
pyrimidine rings per unit cell. The significance tests 
have shown that their mean molecular dimensions are 
identical. Both are in the triketo configuration with an 
equal number of single and double bonds. Perhaps the 
most striking feature is the similarity of the puckering 
of the ring; the displacements of the atoms being in 
the same sense. Even in their physiological actions both 
are diabetogenic. 

The hydrogen-bonded network, which provides the 
attractive forces holding the molecules together in a 
compact arrangement, gives rise to comparatively high- 
density crystals and shorter than normal van der Waals 
approaches. Alloxan has two distinct types of hydrogen 
bonds whereas alloxantin has five. The hydrogen-bond- 
ed layers in alloxan, separated by ½c, are interlinked by 
hydrogen bonds, whereas in alloxantin such layers, 
separated by ½b, are linked only through the C(5)-C'(5) 
bond. 

There is, however, a fundamental difference in the 
substituents at position 5. In alloxan there is a gem- 
dihydroxy group, whereas in alloxantin there is only 
one hydroxyl group. Alloxantin has two molecules of 
water in its structure, while alloxan has none. 
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We present the theory of a method of refinement which, like Scheringer's (1963), uses a minimum number 
of parameters, and also gives reason to believe that by partial refinement, i.e. by the use of selected 
eigenvectors, it may be possible to refine the main features of a chain at a much earlier stage in the 
analysis than is normally possible. 

The method starts direct from the atomic coordinates, rather than from a matrix representation of 
these; it guarantees the integrity of the chains and preserves all the chemical information (bond angles 
etc.) which is implanted in the trial structure. 

1. Introduction 

Scheringer (1963) has shown clearly the advantages to 
be gained by refining certain group parameters des- 
cribing the structure in preference to the x, y, z param- 

eters of each atom. This approach is justified whenever 
one's foreknowledge of the configuration of various 
atomic groupings is more accurate than the results to 
be expected from a conventional refinement, or when 
the initial coordinates are far enough from the truth to 
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raise doubts about convergence. With large molecules 
it becomes increasingly difficult to determine x, y and 
z as independent variables with satisfactory accuracy 
and the choice of some other parameters becomes 
imperative; this is partly because the various covalent 
bond lengths and angles are likely to be known in 
advance to greater accuracy than the values implied by 
the independently measured x, y and z, and partly be- 
cause the reduction in the number of parameters to be 
handled is highly desirable. 

It is our first purpose in this paper to lay the ground- 
work of a new system of refinement. This system starts 
from a set of trial coordinates, which must be con- 
structed to be exactly compatible with chemical know- 
ledge, and it preserves the implanted chemical infor- 
mation during the refinement. This is achieved by re- 
garding the angles of rotation about single bonds as the 
independent variables so that all bond lengths and 
inter-bond angles are conserved during refinement, 
without the need to impose constraints, although the 
molecule as a whole is flexible. It will also be our pur- 
pose to exhibit the characteristics of such a scheme and 
to indicate means of dealing with these. Most of what 
follows will be related to a-helical peptides for which 
it is possible to make an analytical study of these 
characteristics, but the underlying principles are equally 
relevant to non-helical peptides, or to any other chain. 

As is well known, the normal equations of the least- 
squares problem may be formulated as 

M A p  = c3p c~p + ~---p- cgp 

aFT c~F T 
c3--p AF + - ~  AF (1) 

in which AF is a column matrix containing the (com- 
plex) quantities (Igol/IFcl- 1)go, Ap is a column matrix 
containing the (real) shifts in the parameters p which 
determine the structure and ~3F/~p is a rectangular 
matrix for which the number of rows equals the number 
of observations, and the number of columns equals the 
number of parameters. The superscript T denotes a 
transpose and the bar denotes a complex conjugate. 
The normal matrix M is real symmetric, being the sum 
of a Hermitian matrix and its transpose, and it must 
necessarily be inverted implicitly or explicitly if the 
matrix Ap is to be found. As will soon become apparent, 
the matrix M is expected to be ill-conditioned, and to 
contain high correlation among the parameters, i.e. the 
matrix M is nearly singular. Scheringer (1964) has 
shown that high correlation need not necessarily defeat 
a least-squares analysis, and Diamond (1956, 1958) 
satisfactorily solved a highly correlated problem by the 
methods which are outlined below. 

If we wish to solve the normal equations 

MAp = r 

for the parametric shifts Ap [here r represents the right 
hand side of equation (1)] then ordinarily one writes 

Ap=M-lr 

and difficulties will be encountered in evaluating M -x 
if the determinant of M is small. To combat this situ- 
ation we transform our variables to a new set, each of 
which is a linear combination of the original param- 
eters. These new variables may be constructed to be 
uncorrelated, and although they may not all be measur- 
able, the elimination of correlation permits the impor- 
tant ones to be measured reliably, and the unimportant 
and inaccurate ones to be suppressed. This suppression, 
or filtering, has the twin advantages of effectively re- 
ducing the number of parameters to be handled, and 
of excluding spurious detail from the results. Diamond 
(1958) describes and illustrates filtering more fully than 
can be done here, and in Appendix I we discuss the 
connection between correlation coefficients and the rot- 
ation of axes to which the transformation corresponds. 
The algebra of the process, however, is as follows. 

If A is a real orthogonal matrix having the property 

A A T = I  

the identity matrix, then premultiplying the normal 
equations by A T and interposing AA T gives 

A TMAA TAp = A Tr 
and 

ATAp = (ATMA)-IATr 

which is easy to calculate i fA is such as to make ATMA 
diagonal. In the case of an a-helical structure an exact 
orthogonal transformation can be found analytically 
which will yield an ATMA which is approximately 
diagonalized and has some large and some very small 
elements on the diagonal. The elements of ATAp cor- 
responding to large elements in ATMA may then be 
determined, whilst we choose not to refine those for 
which the diagonal elements of ATMA are small because 
the agreement between Fo and Fc is little affected by 
them and their accuracy is very low. The elements of 
A~Ap which have been determined are then premulti- 
plied by A to express the shifts in terms of the original 
parameters. 

Our second purpose, therefore, is to seek a transfor- 
mation A which exactly diagonalizes blocks on the 
diagonal of an idealized matrix M and will therefore 
approximately diagonalize corresponding blocks of an 
actual M. It will be found that the geometry of an 
a-helix permits such an A to be written down. Once 
A is obtained, filtering, which is essential with an ill- 
conditioned problem, becomes possible and the inver- 
sion of M is greatly facilitated. The transformation 
which is found is almost certainly good enough as it 
stands to validate the use of the procedure outlined in 
§ 7 (where off-diagonal blocks of M are considered) 
when working at low resolution with a helical molecular 
fragment. At high resolution or in the non-helical case, 
numerical diagonalization is called for if the best results 
are to be obtained. In any case, it is considered that the 
transformation given here illustrates the nature of the 

A C  1 9 - 6 "  
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problem sufficiently well to be worthy of inclusion, as 
it shows just what kinds of disturbance the structure is 
sensitive to, and how these may be found. The various 
simplifying assumptions made in the derivation of A 
do not in themselves prejudice the values obtained for 
the shifts Ap; they merely enable the crystallographer 
to work with those linear combinations of parameters 
to which a helical structure is particularly sensitive, and 
to ignore those combinations to which it is insensitive 
and for which no reliable measurements can be made. 

The remainder of the paper is made up as follows. 
In {} 2 we define our chosen parameters and evaluate the 
derivatives OF/Op; in § 3 we estimate a somewhat ideal- 
ized matrix M from these derivatives and a simple 
representation of an e-helix; in § 4 we find a transfor- 
mation A from this M which will also nearly diagonal- 
ize a real M; in § 5 we give the physical interpretation 
of the transformation so found, from which, it is hoped, 
the reader will gain a 'feel' for the nature of the pro- 
blem; and in the remaining sections we discuss a num- 
ber of points arising. 

2. The selection of parameters 
and the evaluation of derivatives 

Suppose four atoms are covalently linked in a chain 
and that free rotation is chemically possible about the 
bond from atom 2 to atom 3. Then atoms 1, 2 and 3 
define one plane, 2, 3 and 4 define another, and the 
angle between these planes will be called p. In this work 
angles of the type p will be the only variables apart from 
scale factor, temperature factor and the coordinates 
and orientation of the end of the chain, although other 
parameters, such as inter-bond angles, may be included 
if desired (see {} 5). A polypeptide chain contains two 
such parameters per peptide; one is between Ca and 
the carbonyl carbon and the other between the nitro- 
gen and the next Ca atom. The bond between N and 
the carbonyl carbon is not regarded as having a param- 
eter associated with it since the peptide grouping is 
regarded as planar. A molecule such as myoglobin also 
has, on the average, two such parameters per side 
chain, not counting the haem group. 

A number of writers, notably Eyring (1932), Mizu- 
shima (1954), Nagai & Kobayashi (1962), Hughes & 
Lauer (1959), and Scheringer (1963) have considered 
chain molecules, especially helices, in terms of matrices 
which define the rotational relationship between one 
link of the chain and the next, or between one link and 
a link in a standard orientation, and for such a treat- 
ment a knowledge of the angles p is necessary since 
they occur implicitly or explicitly in the matrices. In 
the present treatment, however, we are not interested 
in the actual values of these angles, but only in the 
quantities Ap, the amounts by which these angles alter 
during refinement. Accordingly the matrices are not 
found to be necessary and the angles p need never be 
determined (except in so far as they may be considered 
interesting in themselves). 

Fig. 1 represents schematically a portion of a poly- 
peptide chain in which it is supposed that all the bond 
lengths and angles have already been made consistent 
with chemical knowledge, and it is our purpose, by 
modifying only the angles p, to improve the agreement 
with X-ray observations. We suppose that the left-hand 
end of the molecule is anchored, (though the anchor 
itself will be assigned refinable parameters) and con- 
sider what happens when a rotation 3pk takes place 
about the kth bond, the vector length of this bond 
being rk as shown. The sense of this rotation is to be 
considered positive if a right handed screw, when given 
a positive rotation Ap~c translates in the positive direct- 
ion of rk as indicated by the arrow. We divide the 
molecule into two parts, a head Hk and a tail irk, such 
that everything in T~c rotates about the axis rx when 
Apx is applied, the atoms in the head being unaffected. 
Then for the purposes of evaluating the partial deriv- 
atives OF/c3plc we consider the tail to wag and the head 
to stay still. Vectors such as rk will be referred to as 
spindle vectors. 

We identify an atom t in the tail by its position vec- 
tor Rt and the difference vector rkt as shown, and for 
analytical purposes these vectors will be referred to 
Cartesian axes with components measured in ~ rather 
than in crystallographic fractional coordinates. The 
practical use of crystallographic coordinates and the 
effects of symmetry are considered in Appendix II. 

Now 
H + T  

F~ = Z" ft~ exp 2rciRt. s~, 
t 

in which c~ denotes a reflexion and t an atom, s~ being 
the Cartesian reciprocal space vector. If the tail moves, 
then 

r 8F~, r 
~F~ = Z 8Rt = X (gradt F.) 8Rt 

t ~ t "  t " ' 

in which gradtF~ is a vector in real space whose compo- 
nents are gF,/gxt, ~3F~,/c3yt and c3F~/Szt, x, y and z being 
Cartesian. Now Rt and rkt differ by a vector which is 
constant with respect to pk, so that 

8Rt =@ene. × rkt , (2) 

. . . . . . . . . .  . . ° , , . , , . . ° , ° ° ~  . . . . . . . . . . . . . . . . . . . .  °~ . .  . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , °°° ,  . . . . . . . . . . . . .  ) . ° . °  . . . . . . .  

• . o t t ~ n  t 

. . . . . . . . . . . . . . . . . .  , ° .°°  . . . . . . .  R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . ° ° ,  ) . ° ° , ° ° ° ~ ° . o . ~ w  

Fig. 1. Indicating the vectors used to describe the movement 
resulting from a rotation pk about the bond rk. The chain 
represents a polypeptide chain with the solid circles repres- 
enting nitrogen and the open circles oxygen. 
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[Spk[ being assumed small enough to permit this linear 
approximation, nk being a dimensionless unit vector 
parallel to re, and 

~F~ rk 
- Z" (gradt F~). (ne x rzt). 

@k t 

Equation (2), when summed over all parameters in 
the head, gives the first-order shift of the atom t. Large 
rotations (such as may be required in a model-building 
programme) may be expressed by writing 

where 

with 

co 

6Rt = Z'rm 
1 

r m =  I(~pknlc × r m - 1  
m 

ro = r ~ t .  

The terms of this vector sum are then analogous to 
the terms in the series for sine and cosine. The use of 
this series is rapid for small rotations and accurate for 
any rotation up to 2rr. 

Now 
g r a d t  F~, = 2 7r i s~ , f . ,  e x p  2 rc i R t .  s~, 

Tk 

OF~, _ 2 rc i s~,. 27 (nk × rkt) ft~, exp 2 rc i Rt .  s, 
• " O P / ¢  t 

o r  

~F~ r~ 
- 2 zc i (s~, x nA:). 27 rxt ft~ exp 2 7r i Rt .  s, 

OplC t 

R~ii 0 R 
: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , , , . , . ,  . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fig. 2. Showing the vectors used to express the movement 
resulting from a rotat ion pl about the bond rz in terms of  
a rotat ion p~ about rk. For a ful l  explanation see text. 

:::::::::::::::::::::::::::::::::::::::::::::::::::: ................................. 

i s ~ i 

elomu :" 

Fig. 3. Showing the vectors  used to include side chains in 
the calculat ions.  The  vectors  rse ,  r ~  and  r~u play roles 
equivalent  to rez, rkt and  r u  respectively in Fig. 2. In this 
example  rse = rje = rk. 

i.e. 
~f~ 

- 2 n i ( s ~ x n ~ ) . Q ~  @~ 
in which (3) 

Tk 

Qk~ = Z rkt f,~ exp 2 n i Rt .  s , .  
t 

i.e. Qk~ is a vector in real space, measurable in e.A, 
whose magnitude is complex so that it has six compo- 
nents. 

Now ifpz is the next parameter, moving towards the 
head (Fig. 2), and ret is the indicated difference vector, 
then 

T/ 
Qt~ = Z ru ft~ exp 2 n i Rt .  s~ 

t 
Tk Akl 

= Z (rkt + rxl)f~ exp2n i R t .  s, + S rufi~ exp 2n i Rt .  s~ 
t t 

in which Aez is that part of the molecule which is in 
Tl but not Te, i.e. 

Ql~ = Q~,~ + rzz F . (TIc)  

Akl 
+ X ru ft~ exp 2 7r i R t .  s~, (4) 

t 

where F~(Te) is the contribution of Tz to F~. Thus one 
Q may be built upon to provide the next, an essential 
prerequisite if the OF~/@z are to be computed rapidly. 
Note also that all the vectors r appearing in these ex- 
pressions are directly obtainable from the coordinates 
from which we start, and that the quantity F~(Tz), 
which must also be carried, becomes Fc when the end 
of the molecule is reached. 

Side chains may also be incorporated into the scheme. 
Whenever a side chain consisting of more than C,  is 
encountered, the current value of Q, Qj~ say, is shelved 
and a fresh start is made at the free end of the side 
chain. When all the side chain atoms have been included 
the corresponding Q for the side chain is qs~ (Fig.3). 
The two chains are then united to continue on the 
main chain by writing 

Qk, = Qi~+q~+r~k F~(Tj) +rs~ F,(s) 
disk 

+ Z ret ft~ exp 2 ~z i R t .  s~ 
t 

and 
aF~ 
@~ - 2 n i (s~ x n ~ ) .  Qk~ 

as before. 
The vector Qe~ is, relative to the rotating bond, a 

weighted mean position vector of all the atoms in Tk, 
the weights given to the atoms beingft~ exp 2 n i R t .  s~, 
i.e. their contributions to F~. To a first approxim- 
ation, (valid especially at low resolution) we may re- 
gard Qk~ as running towards the centroid of the tail. 
If  the tail is extensive, however, it is easy to see that 
this approximation breaks down, since the weights of 
some atoms will be negative, depending on s~. Never- 
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theless, useful results can be obtained for the ~-helix 
by supposing that the tail is a straight piece of ~-helix, 
so that all the ret are approximately parallel to the 
helix axis whence, for almost any weighting system, 
both the real and imaginary parts of Q will be pre- 
dominantly parallel (or anti-parallel) to the helix axis. 
This would be exactly the case if the atoms in the tail 
were strung out along a line, and the assumption that 
Q is parallel to the helix axis is equivalent to replacing 
the tail by a line structure. We shall make this approx- 
imation, however, and return in § 5 to consider its 
consequences, which are surprisingly simple and inter- 
esting. 

3. Estimation of the normal matrix M 

The normal matrix M [equation (1)] is twice the real 
part of (OFT/c3p). (0F/0p), likewise the right hand side 
is twice the real part of OFT/OpAF, and henceforth the 
factor 2 will be dropped and we consider only real 
parts denoted by the symbol ~ .  The elements of M 
are then given by 

OF~ 0F~ 
Met ~ ~ r Ope Opt 

= ~S4z~Z[(s~×ne) .  Qk~][(s~xnt). Qz~]. (5) 
~x 

From here until equation (8) we refer only to the 
k, l element of M, drop the subscripts on the vectors 
and use subscripts to denote components, thus 

s~ is the ith component of s~ 
n~ is the ith component of ne 
n~ is the ith component of nt 

q~ is the real part of the ith component of Qk~ 
q~ is the real part of the ith component of Qt~ 

p~ is the imaginary part of the ith component of Qk~ 
p~ is the imaginary part of the ith component of Qu . 

We also introduce the moduli: 

s = l s= l ,  ~ z  = Z" q2 ,  ..~'2 = L" q~2, 
i t 

and the direction cosines: 
t 

f~=q~/ .~ ,  f , = q ~ / ~ . ' ,  

In these terms 

~ 2  = S p~ , ~ '2  = ~r p~2 
i i 

¢ 

g ~ = p ~ / # ,  g ~ = p ~ / ~ ' .  

M = 4r~ 2 S e~yg s~ nyfg  etmn st n'mf',,. ~.~'  
e t  

+ 4re z X e ~  s~ nl g~ etran st nm g'n • g ~ '  
v t  

(6) 

in which e~j~ is the alternating tensor and the sub- 
scripted variables except st are now direction cosines, 
of which the n are constant during the summation over 
e, s ranges isotropically over all directions of a sphere, 
and t h e f a n d  g are predominantly the direction cosines 
of the direction of the tail. 

If we ignore the minor variations in the direction of 
Q as expressed by f and g from one reflexion to an- 
other, the first term in equation (6) may then be written 
as the product of two tensors 

where 
M =  Ttt U~z 

Tu = 4zcEe~jlc etran n~ f~  n , , , f  ~ 

U~t = ~r s~ st .~.~' 
e~ 

plus a similar term with g replacing f and ~ replac- 
ing .~. 

If the distribution of the scalar .~.~' in reciprocal 
space is isotropic, then, for any given pair i and ! with 
i # l ,  the distribution of s~st . ~ '  has four quadrants 
which are similar except for alternation of sign. Sum- 
mation over c~ (i.e. all quadrants) then gives zero for 
the expected value of Utt, i ¢  l. For i=  l we obtain three 
similar terms on the diagonal, for which the trace is 
X s2.~.~'; hence Uiz may be represented by 

Ugt = (~i,l. ~ ~. s 2,~..,~' • (7) 
~x 

Closer inspection of the form of .~.~' shows that in 
fact its distribution is oblate with the unique axis 
parallel to the axis of the tail. This is because the ex- 
ponential which occurs in the definition of Q [equation 
(3)] alternates most slowly when s is perpendicular to 
the tail. If this is taken into account, then it may be 
shown that the factor ½ in equation (7) should be in- 
creased towards a limiting value of ½, without other 
alteration. Numerical multipliers are inconsequential 
in what follows, so we shall continue to write ½. 

Thus 

M =  TitUs1 
4 7~ 2 

3 • e ijk etmn 6tt niflc n'mf'~. E s 2 .~.~'.  
ot 

But 
ei~ etm,~ 6 ,  = 6m &n - ~,~ & ~ .  

4 roE . , , 
. ' .  M =  ~ ( n ~ n ~ f e f ' k  - n ~ f  I f k n k )  X S 2 . ~ '  

et  

4n2 
- 3 (cos/zl cos a 3 -  cos/z2 cos/14) Z" s 2 (~.~' + ~ ' )  

(8) 
when both parts of equation (6) are included, where/zl 
is the angle between nk and nt (reverting to the earlier 
notation), f13 is the angle between the predominant 
direction of the tail, as seen from parameter k and as 
seen from parameter/ ,  i.e. zero in the helical case. 

/z2 is the angle between n~ and the tai l ,  
and f14 is the angle between nt and the tail. 

The derivation of equation (8) from equation (5) is 
shorter than one found originally by the author, and 
is based on some notes of Mr G. C. Fox. 

If it is supposed that the vectors .~ and # (i.e. qx, 
q2, q3 and p~, p2, P3) are scattered randomly around the 
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central direction of the tail (with a scatter which in- 
creases as s increases) then it may be shown that 
equation (8) continues to represent a systematic con- 
tribution to the element M~z if it is multiplied by cos 2 0 
where 0 is the angle between any one Qk~ and the 
predominant  direction of the tail. Consequently, any 
difference in direction of the individual .~ and .~ 
may be ignored [we have implicitly set ge=fe in 
equation (8)] and Qk~ may be represented as the prod- 
uct of a real unit vector and a complex scalar Qk~, and 

Furthermore, it follows that as resolution increases, 
the systematic effects of the geometry of the molecule, 
as expressed by equation (8), become gradually less 
important  and increasingly overlaid by more random 
effects due to the finer details of the structure. 

We now apply equation (8) to an e-helical chain, 
taking the parameters pk in the order in which they 
occur in the molecule, with the object of illustrating 
the properties of such a system and of finding trans- 
formations to aid in its solution. 

Fig. 4 shows on a stereogram the directions of 8 
consecutive parameter axes in the chain, these being 
grouped in pairs, one pair per peptide, at angles co 
apart, co being the screw angle which is closely equal 
to 100 ° in the ~-helix. The centre of the figure repres- 
ents the helix axis. We also show two angles 2"~ and 2"2 
giving the inclination of these bonds to the helix axis. 
We note that/./3 = 0 ,  ff2 and //4 take the values of 2"a 
and/or 2"z, and//1 is the angle between the two rotation 
parameter axes concerned; thus 

cos//1 = cos 2"~ cos 2"j + sin 2"~ sin 2"j cos no), 

where i and j take the values 1 or 2 as appropriate and 
n is an integer. Thus the first few expected values of 
M~ are 

n6 ns "~1- ~ " 

117 

Fig. 4. Stereogram showing the directions of eight consecutive 
bonds of free rotation in an or-helix. 

4 zc2 2 
Mll = - - ~  (cos 2 zl + sin 2 2"1-cos2 rl) ~ s~, ]QI~I z 

4 zc 2 
M12 = - 7  (cos 2"1 cos z2 + sin zl sin r 2 -  cos zl cos z2) 

X sZ~QI~O2~ 
ct  

4 z~ 2 (cos 2 zl + sin 2 zl cos co-cos  2 rl) M13 = 

Z s~ QI~ 030 

etc. Hence, defining 

4 zc z 2 ~ Q~ 0]~ (9) 
P~J = - 3 -  ~ s, 

M takes the form 
J = l  

I =  1 / s i n  2 zl Pl1 sin zl sin r2 Plz 
/ s i n  2"1 sin zz P21 sin 2 T2 P22 

I = 2 / s i n  z zl cos co P31 sin zx sin z2 cos co P32 
| s i n  rl sin 2"2 COS CO P41 sin / 2"2 cos co P42 

I = 3  k s i n  2 Zl cos 2o9 P51 sin zl sin z2 cos 20) P52 
\ s i n  zl sin 2"2 cos 209 P61 s inz z2 cos 20) P62 

J = 2  

I =  1 sin z rx cos co P13 sin zx sin z2 cos co P14" • " \  
sin Zl sin 2 2 cos CO Pz3 s in2 2"2 cos co P24 

t 

I =  2 sin 2 2"1 P33 sin 2"1 sin 2"2 P34 
sin 2"1 sin 2"2 P43 sin 2 2"2 P44 

I =  3 sin / 2"1 cos co P53 sin 2"1 sin 2"2 cos co P54 
sin zl sin 2"z cos co P63 sin 2 2"2 cos co P64 

etc. (10) 

i.e. M consists of partitions each of them 2 × 2. If  these 
partitions are given indices I and J then each partition 
is the same as the first vis d vis 2"1 and 2"2 and contains 
also a factor cos ( I - J )  co. 

4. Estimation of eigenvectors 

Consider first two parameters pl and P2 which are as- 
sociated with the two rotatable bonds in a single pep- 
tide. These two bonds are very nearly parallel, and 
are physically close together. Now suppose that Apl 
and Ap2 are equal in magnitude and sign, then the 
effect of applying these rotations is, almost exactly, to 
rotate the tail through an angle 2Ap about the mean 
line of the two bonds. This is a gross disturbance of 
the structure and the F ' s  will be sensitive to it. If, how- 
ever, Apl and Ap2 are made equal and opposite, then 
the structure is practically undisturbed, there being 
only second order displacements due to the non-col- 
linearity of the two bonds and displacements of those 
few atoms which occur between the bonds. Evidently, 
therefore, we may expect to be able to measure (Apl + 
Ap2) but not (Apl -  Ap2), and we should therefore seek 
those linear combinations (such as Apl +Ap2) which 
can be measured, and to sort out, and suppress if 
necessary, those linear combinations of parameters 
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(such as A p l -  Ap2) which cannot be measured. ApI and 
Ap2 are examples of correlated variables; a value cannot 
be assigned to Apt alone unless Ap2 is reliably known 
(because only their sum is measurable), but the quant- 
ities (Apl+Ap2) and (Ap t -dpz )  are uncorrelated, the 
former being measurable despite the uncertainty in 
the latter. 

(Apl+Ap2) and (dpt -Ap2)  are the eigenvectors of 
this two-parameter system and their eigenvalues are 
respectively large and vanishingly small, this being the 
mathematical expression of the above considerations. 

In general, there are n eigenvectors for a problem 
having n parameters. Myoglobin, for example, has 
nearly 600 such parameters, and, ideally, one would 
determine all 600 eigenvectors - a job which can only 
be done numerically, and it is clearly out of the quest- 
ion to attempt this on grounds of time, costs and mach- 
ine size. 

It is therefore necessary to seek a compromise tech- 
nique and for this purpose we consider the normal 
matrix for a helical fragment and partition it into 
blocks such that each block on the diagonal is a square 
accounting for N peptides (i.e. order 2N). We then 
find a perfect real orthogonal transformation matrix A 
which will approximately diagonalize each of the diag- 
onal partitions in M. The off-diagonal partitions are 
also altered by the transformation, after which they 
provide the interaction terms between the diagonal 
elements in one diagonal block with those in another. 
As will be seen later, the significant interaction terms 
are few in number, and the net effect is to produce, for 
the whole helical fragment, a band matrix of very much 
reduced order. 

For a chain which is not entirely helical the same 
approach is valid, but each diagonal block requires its 
own transformation to be found numerically. 

The properties of the matrix (10) are readily studied 
if we approximate Pij" by ] / P ~  within any one diag- 
onal block. The extent to which this holds governs 
the maximum value of N for which the resulting trans- 
formation is valuable. Within this approximation each 
diagonal block of M becomes a diadic, being the sum 
of two diads 

M = u u T + v v  T (11) 

in which the row vectors u T and v T are of the form 

uT . . . .  , l/P2n+l, 2n+1 sin h cos (ne)+~o), 

VPzn+2, 2n+2 sin/'2 cos (no)+~o), • • • 

YT . . . .  , /~P2n+l ,  2n+1 sin 2-1 sin (no)+ ~), 

VP2n+2, 2n+2 sin 2" 2 sin (nco+~0), • • • (12) 

in which ~0 is an arbitrary constant and the integer n 
increases by 1 in alternate elements, i.e. with each 
peptide. The vectors u and v have a simple physical 
significance: the trigonometrical factors in each com- 
ponent are proportional to the displacement of the tail 
per radian of displacement in the corresponding par- 

ameter, measured in each of two directions at right 
angles on a plane normal to the length of the tail (see 
below), and the factors I/P represent the sensitivity of 
the X-ray observations to such displacements. The 
angle ~0 represents a reference direction for azimuthal 
measurements in this plane and may be set to zero 
without loss of generality. 

Now, the eigenvectors, of which there are only two 
with non-vanishing eigenvalue, must each be of the 
form au+bv,  being coplanar with u and v. 

i.e. (uu r + vv T) (au + bv) = 2(au + bv) 

where 2 is the eigenvalue. Rearranging gives 

u(auTu + b u r y -  2a) + v(avru + bvTv-- 2b) = 0 ,  

in which the round brackets are both scalars. A linear 
combination of two non-parallel vectors can only van- 
ish if their coefficients vanish; i.e. 

auTu + buTv -- 2a = avTu + bvTv-- 2b = 0 ,  
whence 

a b a 
. . . .  2A = A + 1/1 +A z (13) 
b a ' b - 

where 

A -  
uTu -- vTv 

uTv+vTu 

~v" (P2n+l, 2n+l sin z "rl + P2n+2, 27z+2 sin 2/'2) cos 2noo 
n=O,1... 

Z (P2n+l, 2n+l sin 2 rl  + P2n+2, 2n+2 sin2/'2) sin 2nco " 
n=0,1... 

Defining 0 by 

0=  

arg Z (P2n+l, 2n+1 sin 2/'1 + P2n+2, 2n+2 sin 2 r2) ean% 
n=O,I... 

(14) 
then A = c o t 0  a = c o s 0 + l  b = s i n 0  

are unnormalized solutions to equations (13). The two 
choices of sign lead to the two eigenvectors. 

If the dependence of the round bracket in (14) on n 
is ignored (i.e. if the 'weight' of the tail is regarded as 
essentially constant over N peptides) then 

N--I  

0 = a r g  X eUn°~=(N- 1)co; 
t l=0 

if, on the other hand, we attempt to represent the var- 
iation in the weight of the tail within the group of N 
peptides by writing 

(P2n+l, 2n+l sin 2/.1 + P2n+2, 2n+2 sin 2 772) 

= c +nd, c, d const ,  
then it may be shown that 

0 = ( N -  1)co-~ (15) 
where 

~=tan_l  [ N c°t N c ° - c o t  c° ] 
2 c / d + ( N - 1 )  ' 

but for the sake of clarity of illustration we shall ignore 
this refinement, except to point out that N-peptide 
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groupings near the head end or near the tail end of  a 
helix differ principally in their values of c. 

The unnormalized eigenvectors are then 

auT + bv T 

= [cos ( N -  1)09 + 1] 

× (" • ", 1/P sin rl cos n09, I/P sin r2 cos n09, • • ") 

+s in  ( N -  1)09 

× (. •., I/P sin rl sin n09, lIP sin r2 sin n09, • • .) 

n=0 ,1  " - . N - 1  

from which the normalized eigenvectors may be shown 
to be 

sin rl cos 2 n co 
. ° • 

sin2vl+sin2r2) Z' cos 2 - - - n  co 
n=0 2 

N - 1  ) 
sin T 2 C O S  T - - H  0 )  

- -  . , , 

1/ ( . 1 )  (sin2rl + sinZr2) Z" cos 2 - n co 
n=o 2 

for one vector with sin replacing cos in the other one, 
the dependence on r~ and r2 being unaltered. 

The eigenvalues may then be obtained from 

= e T ( u u T  + vvr)e  = (uT"e) 2 + (vTe) 2 

where e is a normalized eigenvector. This leads to 

N / 2 - 1 (  N - - 1 )  
2 = 2P (sinZrl + sinZv2) Z" cos 2 n 09 

n=0 2 

for N even for the first eigenvalue, with sin replacing 
cos for the second one. If  N is odd we find 

[ ( N - 3 ) / 2 ( N - - 1 ) ]  
2=P(s in2 r l+s in2 r2 )  1 + 2  Z" cos 2 n o9 

n=O 2 

for one eigenvalue, and 

(N-3)/2 ( N - - 1 )  
2P(sinZzl+sinZr2) ~r sin 2 - -  - n  09 

,=0 2 

for the other. 
Now, we take as an example the case N=4, giving 

diagonal blocks in M of order 8. The foregoing analysis 
has shown that  such a block approximates a matrix of 
rank 2; there must also be six other eigenvectors which, 
with the first two, form an orthogonal  set, but which 
have eigenvalues negligible in comparison with the 
first two. These are not unique, but a suitable set may 
be found by rearranging components  in the two already 
found, giving the t ransformation matrix A below. Here 
each row relates to a parameter,  numbered as in Fig. 4, 
and the columns are the eigenvectors. The ordering of  
the columns is arbitrary,  and the choice here is such 
that  the e vector is the first vector found above and the 
c~ vector is the second. These vectors will be referred to 
by the Greek letters, as indicated. 

A =  

p~ ~+aia2  
P2 +bla2 
P3 +aib2 
P4 +bib2 
P5 -a:b2 
P6 -bib2 
P7 --ala2 
P8 m-bla2 

Pl +alb3 
p2 +bib3 
P3 +ala3 
P4 +b~a3 
P5 +axa3 
P6 +bla3 
P7 +alb3 
P8 +bib3 

in which 
sin r~ 

al = ]/sin2ra + sin2r2 

sin T 2 

bl = ]/sinZrl + sin2r2 

P 
- b l  
+ a l  

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

- h i  
+ a l  

0 
0 

a 2 

Y 
-albz 
-bib2 
+ala2 
+bla2 
--ala2 
-bla2 
+alb2 
+bib2 

+a~a3 
+bla3 
-alb3 
-bib3 
-alb3 
-bib3 
+aaa3 
+bla3 

sin 309/2 

0 
0 

- b l  
+a~ 

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

- b l  
+ a l  

(16) 

1 /2  (sin2 -~- -k- sine - ~ )  

sin 09/2 

b2= 1//2 (sin2_~_ + sin2 3 2 )  

cos 09/2 

a3= V 2  (cosa 2 +cosa 3 ;_  ) 

cos 309/2 

b3= V 2  (cos2 2 +cos2 _~_ ) 

The t ransformed matrix 

A = A T M A  

within an 8 × 8 diagonal block is then given approx- 
imately by 

A = diag (2(sinZrl + sinZr2) 

x P sin E -~- + sin E ,0,0,0,2 (sinZrl + sinZr2) 

x P cos 2 -~- + cos 2 - - -  ,0,0,0 . 

5. The interpretation of  the eigenvectors 

I f  we insert the approximate  values of 09= 100 ° and 
* A may be evaluated as 2"1 ~--~ ~ ' 2 ,  

* In any real computation rl, r2 and co would be given 
their real values, but for the purpose of discussing the character- 
istics of the problem the difference of a few degrees between 
zl and z2 may be ignored. 
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Pl 
P2 
P3 
P4 
Ps 
P6 
P7 
P8 

Pl 
Pz 
P3 
P4 
P5 
P6 
P7 
P8 

- -  0"2732 -0"7080 -0"4185 0 
0-2732 0.7080 -0"4185 0 
0"4185 0 0.2732 --0"7080 
0.4185 0 0-2732 0.7080 

-0 .4185 0 -0"2732 0 
-0 .4185 0 -0"2732 0 
-0"2732 0 0"4185 0 

- 0 . 2 7 3 2  0 0"4185 0 

e ~ ~ 0 
-0 .4022  0 0.2985 0 
-0 .4022 0 0.2985 0 

0.2985 0 0.4022 0 
0.2985 0 0.4022 0 
0.2985 -0 .7080 0.4022 0 
0-2985 0.7080 0.4022 0 

-0 .4022 0 0.2985 -0 .7080 
-0 .4022 0 0.2985 0.7080 

The combination of rotations +0.2732 ° about nl, 
+ 0.2732 ° about nz, etc., as given in the ~ column, gives 
a combination of displacements which may be meas- 
ured with an error proportional to 1/1/2~ where 2~ is 
the e eigenvalue, which appears in the 11 position in 
A, i.e. it is measurable. A also indicates that the e com- 
bination is also measurable, slightly more accurately, 
but that a virtually infinite error is associated with the 
measurement of the remaining six combinations. 

It was indicated at the beginning of {} 4 that we could 
not expect to measure (Ap~-  ApE) etc., and this fact is 
expressed in the above formulation by the vanishing 
eigenvalues associated with the fl, 3, ( and 0 combin- 

ations. Thus any experimentally determined combin- 
ation of rotations will contain an indeterminate con- 
tribution from these four eigenvectors unless we filter 
them out. 

We next consider why it is that the ~ and r/eigen- 
values are vanishing whilst the e and e ones are not, 
and from this it will be clear why there are only two 
non-vanishing ones, and the consequences of our linear 
tail approximation (i.e. all Q's parallel to the axis) and 
of our neglecting of differences among the P~ will 
become clearer. 

In Fig. 5 we construct figures illustrating the move- 
ment of a point on the helix axis somewhere in the tail. 
Starting from O in the c~ diagram the first arrow rep- 
resents the linear displacement arising from a rot- 
ation of + 0.273 ° about nl and about n2, the next arrow 
represents the displacement due to a rotation of 
+0.418 ° about n3 and n4, these axes being 100 ° round 
from the first, the figure representing the trace of the 
helix axis on a plane normal to it. We continue in this 
way to find the resulting displacements, from which it 
is clear that the e and e combinations represent tilts 
of the tail about the 4-peptide grouping, in two planes 
which are at right angles, the magnitudes of these tilts 
being proportional to the square roots of the corres- 
ponding eigenvalues. When we have thus accounted 

for two tilts in planes at right angles to one another 
there remains no other possible tilt of  the tail which 
could be mathematically orthogonal (and therefore 
also geometrically orthogonal) to the first two. It is 
for this reason that the ?~ and r/combinations are self- 
cancelling with respect to tilts of the tail and have cor- 
respondingly vanishing eigenvalues. These consider- 
ations indicate that whatever number of peptides be 
included in the group, we shall never expect to get 
more than two large eigenvalues. This has its value in 
that the configuration of an a-helix may be refined at 
an early stage, with the use of only these two largest 
eigenvectors per group, which is sufficient to allow the 
helix as a whole to wriggle a little without allowing the 
situation to become confused by insignificant move- 
ments within each group, and for this purpose groups 
larger than four peptides may be worth while. 

In the above derivations we have supposed, for the 
purpose of estimating A, that the tail is a line structure, 
so that the direction of each Q is along the helix axis. 
This being so, the above tilts are the only meaningful 
rotations of the tail about axes in the groups of pep- 
tides. As soon as the tail is regarded as having thick- 
ness, however, rotations about the helix axis become 
meaningful. Since all the movements are compounded 
of rotations, and since the c~ and e tilts can be regarded 
as rotations about mutually perpendicular axes normal 
to the helix axis, it follows that there can be only one 
other rotation which is mathematically (and geom- 
etrically) orthogonal to these two, this being about the 
helix axis. This means that if we had made allowance 
for the finite thickness of the tail, then we should have 
found one and only one combination of rotations equiv- 
alent to a rotation o~ the tff~ part 0~ the he~,ix about 
its own axis, but we have not done this, and the result- 
ing combinations are therefore not orthogonalized with 
respect to this type of rotation. It follows that we may 

Yof; 
o 

Fig. 5. These figures represent the trace of the helix axis on a 
plane normal to it at a point somewhere in the tail when 
certain combinations of rotations occur in a group of four 
peptides. The e and e combinations of rotations result in 
tilts of the helix in two planes at right angles, whereas the 
?, and r/ combinations of rotations are self cancelling and 
leave the helix straight (if it was originally straight). 
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expect any of the combinations we have found to in- 
clude some twisting, and it turns out that the e and a 
combinations do, to different extents, and that the 
others are all free of it. Thus by using the idea of a 
linear tail, we have not been prevented from finding 
eigenvectors which involve rotations about the helix 
axis; we have simply been prevented from estimating 
their eigenvalues correctly. The zero value which we 
have found for the 17 eigenvalue corresponds to the fact 
that a rotation of a line about its length is undetectable. 

If an actual numerical matrix M is computed from 
the coordinates of a structure, however, it will contain 
information dependent on the tail thickness. Therefore 
if such a genuine matrix is subjected to the transform- 
ation A it must yield a small but positive element on the 
diagonal in the r/position. 

For the purpose of estimating the movement of the 
tail some distance from the peptide grouping, it is 
sufficient to regard the rotation axes in the group as 
being grouped together in a region of negligible volume, 
i.e. as being concurrent. However, no amount of rot- 
ation about concurrent axes can produce an elongation 
or contraction of the helix along its length. In order 
to estimate this effect it is necessary to recognize the 
finite spatial extent of the group of peptides. When this 
is done, it is found that the elongation produced by any 
combination of rotations is proportional to the radius 
of the helix, to sin z, and to the sum of the components 
of the combination concerned. Thus the ratios of the 
elongations produced by the c~, ),, e and 17 eigenvectors 
are 0:0: -0.1037: +0.7007. Thus the r/vector, in ad- 
dition to rotating the tail about the helix axis, also 
alters the helix length. Since the e and r/vectors both 
affect length it is clear that they are not mathematically 
orthogonal (i.e. they remain slightly correlated). The 
matrix algebra given above has failed to orthogonalize 

these vectors with respect to elongation, because we 
have ignored the radius of the helix and supposed all 
the Q vectors to be parallel, whereas peptides on op- 
posite sides of the helix must have Q vectors whose 
directions differ by an amount depending on the diam- 
eter of the helix. If this effect were estimated it could 
be included in the analysis by modification of the values 
for the angles/z substituted in equation (8). Here we 
have, in effect, replaced the group of peptides by a 
structureless pivot, rotations about which cannot prod- 
uce elongation. 

We summarize these results in Table 1, where the 
entries are proportional to the diplacements concerned. 

Table 1 reveals one adverse characteristic of the 
system, however. It shows that the ratio of twist to 
dilation is the same for all the combinations, so that 
it is not possible to produce a dilation independently 
of a twist, and vice versa, though both these move- 
ments may be made independent of tilting. The reason 
for this is that in this scheme inter-bond angles have 
been held constant at their initial values, only swivel- 
ling movements being permitted because these are the 
chemically permissible movements, and the treatment 
rests on the assumption that the starting coordinates 
have the correct local stereochemistry. However, the 
deficiency may be made up, if necessary, by introduc- 
ing spindle vectors n which, instead of being aligned 
along the freely rotating bonds, are situated at C~ 
atoms and normal to the C - C ~ N  plane. Parameters 
associated with these rotation axes would then decouple 
twisting from dilation by allowing variations in the 
inter-bond angles at C= to take place. In the present 
scheme, however, it is apparent that with groupings 
of four peptides it is only likely to be worthwhile re- 
fining the c~, e and r/vectors, i.e. three quarters of a 
parameter per peptide. 

Combination 

Table 1. Summary of  results 
Tilt Twist 

(i.e. bending of the helix about the (i.e. rotation of tail part 
4-peptide group) of helix about its axis) 

In plane containing helix axis and bisector 
of acute angle between nl and ns 

2Pfsin2 rl +sin2 7r2) (sin 2 c°--~-+sin 2 - ~ )  

0 

in plane _1_ to a tilt 

2P(sin2 • (cos'   -+cos  

0 

cosz c o s t  +c°s 

a~ 3a~ 
cos2-~- +cos 2 2 

( °  COS "t" COS ~ -- COS 

o~ 3o) cos2 -)- +cos2 ---~- 

Dilation 
(i.e. linear expansion 
parallel to helix length) 
(Q = radius of helix) 

0 

e s i n r  c o s t  + c ° s  

~//COS 2 ~ 3o~ (_D +COS 2 T 

e s i n z  c o s T - c o s  

cos2 -~- +cos2 
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6. A n c h o r  r e f i n e m e n t  

So far we have considered only parameters within 
the chain, but it is clearly also necessary to allow the 
anchor (or nose) of the molecule freedom of translation 
and rotation. 

The three translational degrees of freedom are simple 
to handle, the derivatives OFo, lOx, cgF~l~y, OFJOz being 
components of the vector 2zris~Fo, where F~ denotes the 
scattering factor of the molecule, which may or may 
not be the crystallographic F, depending on the num- 
ber of molecules in the cell. This will lead to a 3 x 3 
block on the diagonal of M, which is expected to be 
well conditioned, because, generally, there is no dir- 
ection of translation (for the entire molecular fragment 
attached to the anchor) to which the F's are insensitive, 
though exceptions to this can occur. 

For the orientation freedom we permit rotations of 
the whole molecule about axes parallel to the adopted 
Cartesian axes passing through some chosen anchor 
point. The centroid of the tail is a good choice as this 
minimizes correlation between translation of the whole 
molecule and rotation of it. If the molecule or molec- 
ular fragment being refined is rod-like with direction 
cosines cos 0"1, cos 0"2, cos 0"3, then it may be shown 
that the transformation matrix 

A =  

COS 0.1 

COS 0.2 

COS 0" 3 

- sin al 0 m 

- -  COS 0" 3 
cot 0"~ cos 0"z sin 0"1 

COS 0"2 
cot 0"1 cos 0"3 sin 0"1 _ _  

represents, in the first column, a rotation of the rod 
about its length, for which the corresponding diagonal 
element in ATMA is small, and the other two columns 
represent tilts of the rod about axes perpendicular to 
its length, to which the X-ray observations are sensitive 
even at low resolution. 

7. A p p l i c a t i o n  

The foregoing discussion has been primarily concerned 
with blocks on the diagonal of M and we now wish to 
propose an approach to the solution of M as a whole. 

Suppose that the parameters in the main chain of the 
molecule are arranged in M in the order in which they 
occur in the molecule, and that M is divided into 
partitions mxj with the m i i  square though not neces- 
sarily all of the same size. Then for the transformation 
ATMA write 

A12.. .  \ 
A22 ) 
//ArlmxiAll 

= I)r m lA1, 

A= 

A1Tlm12A22"''>T 
A22m22A22 

= . AT 21 m22 A22 

so that each All diagonalizes the corresponding mH, 
being found either numerically or by the foregoing ap- 
proach, and solve for those elements of ATAp for which 
the corresponding diagonal elements of A are large. 
Elements of A TAp for which the diagonal elements of 
A are very small may be ignored (set to zero) provided 
that they are not severely correlated with any in another 
partition for which the diagonal element is large and 
for which a determination is being made. Estimates of 
the partitions A ~ m I j A j j  become less reliable away 
from the diagonal, but with this reservation it may be 
shown that two diagonal blocks of order 8, (N=4),  
in an c~-helical part of the molecule are related by an 
off-diagonal block A r mljAj j  of the form 

! 

/ - g - ' X - t - -  * 

]//2~2~, cos 4(1-- J)co i l ,,tJ~ sm 4(1-- J)co 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

l/'2,22 sin 4(I -J)co /" ' 1.' Jt~2~ cos 4(I-J)co 

expanded to order 8 by insertion of three rows (col- 
umns) of zeros at each row (column) of dots, where 
2~ is the ~ eigenvalue in one diagonal block, 2~, its value 
in the other and similarly for 2, and 2;. 

This indicates that the two eigenvectors in any dia- 
gonal partition which represent a bending of the helix 
as a whole are strongly correlated with the corres- 
ponding vectors in a neighbouring partition, but that 
those vectors which are self cancelling in the displace- 
ments they produce are not appreciably correlated 
with the important eigenvectors, c~ and e of other blocks. 
This means that we may, for example, refine a structure 
at low resolution by deleting those rows and columns 
in A which are represented above by zeros and the 
resulting solution is then one in which the helix as a 
whole is permitted freedom to adjust itself to fit the 
X-ray observations by bending in any direction, with 
one pair of bend measurements for each turn of the 
helix• The deletions mentioned above are equivalent to 
ignoring minor alterations of structure of a local nature, 
such as the y-vector, which represents a combination 
of rotations around bonds of a kind which transmits 
no disturbance to the tail. This concentration of at- 
tention on those combinations of displacements which 
affect the course of the chain as a whole is just what 
is required in the earlier stages of refinement. 

We are then left with a band matrix of much reduced 
order and one must consider what width of band is 
required. The above estimate of the blocks A T m I j A j j  
is based on a calculation which supposes that neigh- 
bouring groups of N peptides carry essentially the same 
tail, i.e. the geometrical factors are taken into account, 
but variations in the quantities P are not. Consequently 
the above estimate indicates that the ~ and e vectors 
of one partition are together totally correlated with 
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those in another, for any ( I - J ) ,  i.e., all such off- 
diagonal blocks are important. However, the situation 
is not as bad as this. To say that the correlation of 
these vectors in neighbouring blocks is total is equi- 
valent to saying that a bend of a few degrees in the 
helix as a whole located at one turn of the helix is 
indistinguishable, X-ray-wise, from the configuration 
produced by the same bend applied to a neighbouring 
turn of the helix. Clearly, for neighbouring turns, these 
two displacements are difficult to distinguish, and 
therefore correlated, but taken over several turns the 
distinction must improve on account of the scattering 
material located between the bending sites (correlation 
must fall because of variations in P). It must therefore 
be a matter of experience to determine the number of 
off-diagonal blocks required, but it is expected that a 
maximum value of ( I - J )  about 4 may be sufficient 
for 4-peptide groupings (N= 4). 

ordinates must already be very close to the true values 
unless the true structure is a good deal less regular 
than is to be expected. For example, if the planes in 
which the peptide groups lie genuinely make a variety 
of angles with the helix axis, making a somewhat rag- 
ged helix, then such a structure could not be represented 
by a standard c~-helix except by modifying the latter 
with displacements such as the fl combination, which 
we expect to be unmeasurable - only in such unlikely 
circumstances would the refined atomic coordinates 
fail to come close to their true values when the fl, y, 3, ( 
and 0 vectors are suppressed. 

I should like to make acknowledgement to the referee 
whose comments on the first draft have led to signi- 
ficant improvements. 

8. Summary 

It has been the object of this paper to show that by 
choosing appropriate parameters, p, and by choosing 
appropriate linear combinations of these, we may not 
only reduce the number of unknowns to be determined, 
but may also make 'refinement' a worthwhile operation 
at an early stage of analysis in a structure rich in a-helix, 
and in other structures if numerical diagonalization is 
used. 

Certainly an electron density map at 6 A resolution 
does not in itself determine atomic coordinates, but 
it does delineate the course of an a-helix. It follows 
that any combination of parameters (e.g. the c~ and 
vectors) which affects the course of the helix as a whole 
is refinable at this resolution. Similarly, if the resolution 
is high enough for the thread on the screw to be 
discernible, then parameters (such as the r/ vector) 
which relate to dilation and twisting are refinable. The 
generalization is that we may say that if we properly 
diagonalize the matrix M to yield A, then just as one 
proceeds from low to high resolution in solving the 
structure, so may we simultaneously proceed from re- 
finement of a few eigenvectors with the largest eigen- 
values towards those with smaller eigenvalues, the pro- 
cess being limited at every stage by the resolution with 
which the structure is determined. 

Clearly this presupposes that it is possible to write 
a set of chemically reasonable starting coordinates 
which are nearly enough correct for refinement to con- 
verge. This may be achieved in the c~-helical regions by 
inserting coordinates corresponding to some standard 
a-helix in the positions indicated roughly by a low 
resolution electron density map. The coordinates re- 
sulting from refinement of these will correspond well 
to a helix with the right course, but, of course, they 
will only correspond to the true atomic coordinates 
when resolution is high enough to determine also the 
azimuthal angle of the helix about its own axis. If this 
condition is satisfied, then the resulting atomic co- 

APPENDIX I 

On the relationship between correlation coefficients 
and the eigenvalues and eigenvectors of two-dimensional 

sections of the representational ellipsoid of M 

If the parameters shifts, Ap, which are found by a least- 
squares analysis are modified slightly by amounts @, 
then the sum of the squares of the errors, a, (which is 
minimized by Ap) is increased by an amount go" given by 

~a = ~pT M ~p 

(cf. Diamond, 1958). Thus the surface in p-space 
~ipTM6p =const. is a contour of constant error in the 
vicinity of the least-squares solution. If we suppose 
that the least-squares analysis is done many times with 
many sets of data, then the solutions obtained (points 
in p-space) will be normally distributed about the ideal 
solution, forming a cloud of points with density 

~ipT M/ip 
A exp - ~ . . . . .  B- - (17) 

where A is a normalization constant and B is a variance 
given by 

B = 2 ~z X w (A F) 2 
( n - f )  ' 

w being a weighting factor and ( n - f )  the number of 
observations minus the number of independent param- 
eters determined. 

Now the correlation coefficient between two variates 
x and y in statistics is defined by 

Cxv =/h,/V'~2-2,u20 (18) 
where 

lli~ = ( x - £ ) t ( y - f i ) ~ f ( x , y ) d x d y ,  (19) 
O0 - - O 0  

wheref(x, y) is the distribution of x and y, 2 and .9 are 
the means of x and y and p~j is the i, j th  moment of 
the distribution (Cruickshank, 1959). Thus to determine 
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the correlation coefficient between two parameters p/e 
and pt, say, we consider these parameters to be nor- 
mally distributed variates according to (17) and evalu- 
ate (18) using (19). Now (17) describes the over-aU 
distribution of all the parameters of the problem, 
whereas the correlation coefficient relates to these in 
pairs, so that we must consider just two among the 
many involved in (17), or figuratively, we must consider 
two-dimensional sections of the poly-dimensional el- 
lipsoid 6pTM6p =const*. Such a two-dimensional sec- 
tion is necessarily an ellipse, the principal axes of which 
do not necessmily coincide either in magnitude or 
direction with the principal axes of the ellipsoid of 
which it is a section. This is easy to see in three dimen- 
sions. Then 

S i ( /zn = apk ap/2 A~z exp - -~- [ap~ Mkk + 
co  oo 

2 apk apt Mkz + apt 2 Mu]) dapl~ dapz , (20) 

in which the contents of the square brackets now re- 
present the elliptical section, and the normalization 
constant Akt now depends only on Mee, Mu, M~t and 
B. We have taken a central section of the ellipsoid 
(i.e. set apm=0 for m # k  or l) as this simplifies the 
algebra. Non-central sections need only be considered 
if the total correlation coefficient is sought. 

Now suppose the semi-principal axes of the elliptical 
section make an angle 0 with the axes pk and p~ and 
are of lengths a and b, and then transform variables to 

and ]3 according to 

ap/¢=~ cos 0+/3 sin 0 
apt = -c~ sin 0+/3 cos 0 

with unit Jacobian, then (20) becomes 

i i o ] /~11 = ~ _~, 2 sin20 + e/3cos20 

x Aktexp---~-  --~ +--~- d~d/3, 

in which the term in e/3 contributes nothing to the 
integral in the range -m--+oo and integration gives 

Ak~ B2a b sin 20 ( b 2 - a  2) . 
/*n = 4 zt 

Similarly 
A1a B 2 ab (a z cost 0 + b 2 sin 2 0) (21) 

~2o - 2re 

and 

Agz B zab (b 2 cos2 0 + a 2 sin 2 0) ,  
/~o2 - 2zc 

* Strictly speaking such a two-dimensional section of the 
ellipsoid determines the partial correlation coefficient between 
pk and pt. The total correlation coefficient between p/¢ and p~ 
would be obtained by considering a projection of the distri- 
bution (17) on the pe-p~ plane. See, for example, Weather- 
burn (1949), Ch. XII. 

whence 
C /'/11 __ b/a -- a/b 

1//,02/'20 ]/cot 2 0 + b2/a 2 + a2/b 2 + tan20 

(22) 
from which it is clear that the correlation coefficient 
vanishes if the ratio a/b is unity (ellipse circular; sect- 
ional eigenvalues equal) or if 0 is a multiple of 7r/2, i.e. 
if the ellipse is aligned with its axes parallel to the axes 
Pe and pz, which occurs if the element Met is zero. In 
the foregoing paper we have attempted to minimize 
correlation by working with combinations of param- 
eters which in p-space are nearly parallel to the prin- 
cipal axes of the ellipsoid. 

By the substitutions y = l o g  (b/a) and z = l o g  tan 0, 
C may be written 

sinh y 
C =  

l/cosh (y + z) cosh ( y -  z) 

which, for 0 = 45 ° gives C =  tanh log (b/a). In Fig. 6 we 
give a graph of the partial correlation coefficient as a 
function of 0 for values of log (b/a) corresponding to 
ratios of sectional eigenvalues up to 1" 180. These curves 
show in particular that the greater the ratio of sectional 
eigenvalues, the more precisely must 0 be determined in 
order to yield a small correlation coefficient, which 
could mean that the angle 0~ of equation (15), {} 4, should 
not be ignored and the resulting transformation (16) 
should be modified accordingly. However, the trans- 
formation (16) contains implicitly the transformation 

( al - b l  ) 
bl al 

in four positions. This is equivalent to a rotation 
through an angle 0 (in the notation of this appendix) 
given by 

sin zl 
COS 0 = al ----- 

J/sin 2 Zl + sin 2 2"2 

and it may be shown that, if variations in the quanti- 
ties P are taken into account to find an ideal rotation 
angle 0i then the angle 0 given above differs from the 
ideal value by a residual angle Or given by 

Or ~-- ¼. (Pn--  Pz2)/Plz . 

0 

O--+ 

-1 

Fig. 6. Plot of the partial correlation coefficient between two 
variables as a function of 0 for values of log (b/a)=½ log 
().1/22) by intervals of 0.4 up to 2.0 and at 2-6. The limiting 
forms are (b/a-a/b) sin 20, when b-~ a and the square wave 
when b/a approaches 0 or oo. 
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i.e. Or'~ 15 ° if the quantities P are closely similar, as 
is to be expected, especially near the head end of the 
molecule. 

Now, if 1/#20 is the r.m.s, error in the estimation of 
the combination (Pl cos  O+p2 sin 0) then it may be 
shown that 

1/ (]220)0r 21 
(#zO)Or=O - cos Or 1 + -~2 tan2 Or 

where 21/2l is the ratio of sectional eigenvalues, i.e. 
eigenvalues of 

Mix Mlz 
M21 M 2 z ) .  

This function is plotted in Fig.7, and though this 
treatment is limited to partial correlation coefficients, 
it does indicate for a large ratio )q/~tz, i.e. for an ill- 
conditioned problem such as this, that provided the 
transformation angles 0 are correct to within a few 
degrees then the determination of an important com- 
bination of variables is achieved with a standard devi- 
ation greater than its ideal value by a factor which ap- 
pears as ordinate in Fig.7. This is clearly not an ex- 
haustive study of the characteristics of similarity trans- 
formations which only approximately diagonalize a 

. (1~ ao) Or 

(~2o)0,=0 

10 

-15 ,-10 -5 b 5 1'o "i~ 
Or degrees 

Fig. 7. Plot of the standard deviation of the determination of 
a parameter as a function of the residual angle 0r between 
the parametric axes and the axes of the ellipse, expressed 
relative to its value at 0r=0,  for values of log (b/a) equal to 
0 (horizontal straight line), 1, 2, 3 and 4. The curve for 
log (b]a)= - c~ occurs just below the horizontal line. 

matrix, but it does give some indication of the accuracy 
required of the rotation angles of which any similarity 
transformation may be made up. 

APPENDIX II 

S p a c e - g r o u p  e f fec t s  

Space-group effects may conveniently be divided into 
two parts as follows" 

(1) The effect of non-Cartesian coordinates. 
The analysis of this paper has been given entirely in 

terms of Cartesian coordinates. The results may be 
carried over into the crystallographic system provided 
we can evaluate the quantities 

OF. 
- 2~z i (s~ x n k ) .  Q~.  

and 
T 

Qk= = X rkt f= exp 2 n i Rt .  s,; 
t 

i.e. a formulation of the vector triple product must be 
found. Here 

s is a Cartesian vector measurable in A -a. 
r is a Cartesian difference vector measurable in A. 
R is a Cartesian position vector measurable in A. 
Q is a complex Cartesian vector measurable in e.A, 

and 
n is a Cartesian vector whose magnitude is the pure 

number unity. 

Let si, rt, R~, Qt, ni be the components of these vect- 
ors, and let hi, xi, Xt, qi, ui be their crystallographic 
counterparts; i.e. the first three are pure numbers and 

qt = X x t f e x p  2 n i h .  X .  

Then r, R, and Q transform according to 

Q~ = Aa qz 

in which the elements of A are in A. Then if 

nt = Al l  ut 

is to be dimensionless, u~ must be in A -I, and if we de- 
fine a vector v whose components are the (pure number) 
differences of the crystallographic coordinates of points 
which define the ends of the spindle vector n then 

Ut = Vt/V 

where v=  IAlwz] is the spindle length in A. 
Finally sl=B~tht, where A and B are related by 

AB T = I, the identity matrix. 
We give the results for the general triclinic case using 

the usual angles ~, fl and ), and also angles A, B, F 
which are the angles in the corners of a spherical 
triangle whose sides are ~, fl, y. The matrices A and B 
may then be written 
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A =  ( a s i n f l s i n F  0 0 ) 
a s i n f l c o s F  bsinc~ 0 

acosf l  b c o s e  c 

B=  [ (a sin fl sin F) -1 ( - b  sin c~ tan F)  -I 
0 (b sin ~ ) - 1  

0 0 

( -  C Sill ~ tan B) -1 \ 
( - c  tan ~)-1 ) 

C - 1  

The required triple product is then 

e~j~ Qi sj n~ = e~jk An Bjm Akn qt hm un = ~zmn qt hm un , 

where 
~lmn = e~jk Agt Bjm Alcn 

from which we obtain 

ac sin B 
~ 1 2 3  = - - ~ 3 2 1  = b sin A sin F 

ab sin F 
~231  = - - ~ 1 3 2  = C sin A sin B 

bc sin A 
~312 ~ - -  ff213 : - -  a sin B sin F 

~ 1 2 2  = - -  ff221 = ~ 3 3 1  = - -  ~'133 = a/tan A 

~ 2 3 3  = - -  ~ 3 3 2  : ~ 1 1 2  : - -  ~ 2 1 1  = b/tan B 

~311  = - -  f f113 = ~ 2 3  = - -  f f322 = c/tan F 

and the remaining nine elements of ~ (those with first 
and last suffix equal) vanish. 

In computation of OFJOp~ it is convenient to evaluate 
all the derivatives of a particular reflexion at a time, 
i.e. k varies in the inner loop and ~ in the outer loop. 
Hence the derivatives may be written 

2rci(qz, qu, qz) ( O , 3  --'30 -- '1'2) (UX)uy 

- ~z 'I 0 u~ 

where the quantities 

~ l = h .  

' 2  ~ - - h  , - -  

bc sin A c b 
- k . ~ - l .  

a sin B sin F tan F tan B 

c k .  ac sin B a 
+ - l . - -  

tan F b sin A sin F tan A 

b a l .  ab sin F 
~ 3 = - h . - -  k . - - +  tan B tan A c sin A sin B 

need only be calculated in the outer loop, and contain 
only constant multiples of h, k and 1. 

(2) The effect of  the plurality of  asymmetric units 

In structure factor calculations one must take ac- 
count of symmetry-related positions; in this work one 
must also take account of symmetry-related directions. 
Unfortunately, it is not feasible to give a generalized 

treatment here, but we give the results for space group 
P2~, and others may be dealt with similarly. 

In this paragraph we use unprimed variables to de- 
note one asymmetric unit, and primed variables to 
denote the corresponding quantities in the second asym- 
metric unit. Thus 

1 OF 

2zci " 0p (0 (ux) 
=(qz, qu, qz) ~3 0 --'1 Uy 

-~2  '1 0 uz 

) ( )  0 - ~3 ~z uf 
@(q~,q;,q;) '3 0 --'1 Uy 

- ' 2  '1 0 u; 

in which the encircled sign would be reversed if the 
relationship between asymmetric units were enantio- 
morphous. 

Now in P21 

U x = --Uz Uy~Uy U z~ -- Uz 
whence 

1 

2rci 
OF s • 

- ux ['3 (qv-qy)  - ~2 (qz-qz)] Op 

+ uv[,l(qz+q'~) - '3(qz+q'~)] 

+ uz[ '2(qz-q '~)  - '1 (qv -@)] ,  

so that we must calculate the five complex quantities 

• t • (qx+qx) ,  (qz-q '~) ,  ( q v - @ ) ,  (qz+qz)and  (qz-q~). 

Now 

qz = S x f  exp 2~zi (hX + k Y  + l Z ) ,  
q'~ = - Z x f e x p  2rci ( - h X  + k Y -  IZ  + k/2) 

qv = Z y f  exp 2n i (hX+k Y+ lZ) , 
qy = Z y f  exp 2~zi( - hX+ k Y -  IZ+ k/2) 

qz = Zzf  exp 2rci(hX+ k Y+ lZ) , 
q" = - Z z f  exp 2gi ( -  hX+ k Y -  l Z -  k/2) 

from which we obtain, 

for k even for k odd 

(qz+ q'~)=2Xxf sin 2~z(hX+ IZ) 
x [ -  sin 2zck Y+ i cos 2~k Y] = ( q x -  q'~) 

(qx-  qx) = 2Sx fcos  2~(hX+ IZ) 
× [cos 2gk Y+ i sin 2zck Y] = (qz + q~) 

2Zy f  cos 2rc(hX+ IZ) 
× [cos 2nk Y+ i sin 2nk Y] = (qu-  q~) 

(qu-  q'~) = 2Zy f  sin 2zt(hX+ IZ) 
× [ -  sin 2nk Y+ i cos 2~k Y] 

(qz + q'~ ) = 2Xz f  sin 2rc(hX + lZ) 
× [ -  sin 2~k Y+ i cos 2nk Y] = (qz -  q'~) 

(qz-q'~)= 2Xzf  cos 21r(hX+ IZ) 
× [cos 2zck Y+ i sin 2~k Y] = (qz + q'~) 
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F =  2Zfcos  2n(hX+ lZ) 

x [cos 2nk Y+ i sin 2nk Y] 

2 Z f  sin 2n(hX + lZ) 

× [ -  sin 2nk Y+ i cos 2nk Y] = F,  

which may be summarized by saying that if  ~ is the 
geometrical structure factor for any k, and f¢ is the 
geometrical structure factor calculated as if the parity 
of  k were opposite to its true value, then for odd or 
even k 

F = Z f ~ ' ,  (qz,+qx)=SxffY, ( q x - q x ) = S x f , ~  ", 
,) (qu-qy = Z y f f Y ,  (qz+qz)=Xzf fY,  ( q z - q ' ~ ) = Z z f ~ .  
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The Modes of Hydrocarbon Chain Packing 
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The symmetry of a saturated hydrocarbon chain in extended trans configuration and indeterminate 
length is reviewed. A uniform row of such chains is defined so that the chain axes are parallel, coplanar 
and equidistant, and that the planes of the carbon atom zigzags of all the chains are parallel. The 
symmetry within such a row is stated, and all the possible symmetry relations between such rows when 
they are parallel, adjacent and identical is investigated. Making reasonable assumptions concerning 
dimensions, packing efficiency and stability, four different relations are found when the chain axes of 
neighboring rows are parallel, and seven different relations are found when the axes are not parallel. 
All the possible chain-packing subcells that could be made up of such rows are constructed, subject 
to the limitations that the subcells extend over no more than two rows, and that the same symmetry 
relation exists between all adjacent rows. Ten different subcells are thus generated when all the chain 
axes are parallel, and thirty-one when they are not. It is found that the eight reported chain-packing 
modes are all included among these. It is shown that the symmetry of three of the six reported subcells 
in which the chain axes are all parallel is higher than was previously assumed. An attempt to relate the 
frequency of occurrence of the various subcells to the van der Waals energy as calculated by the Salem 
method failed. 

Introduction 

Eight hydrocarbon-chain  packing arrangements  have 
been described f rom single-crystal structure determin- 
ations, six of which have all the chain axes parallel 
and the remaining two have the chain axes of alternate 
layers crossed. Another  packing arrangement,  the hex- 
agonal, has been postulated from powder data but  its 
structure is unknown.  Still another,  the ' ideal ' ,  has had 
its structure described in detail (Kitaigorodskii,  1961) 
but  it has never been observed. 

The purpose of this communica t ion  is to relate the 
described modes by generating them from symmetry 

* Present address: Unilever Research Laboratories, Chem- 
ical Physics Division, Port Sunlight, Cheshire, England. 

operations between uniform rows of chains. This ap- 
proach not only leads to simple classification of  all the 
known packing modes, but  it may indicate what  new 
ones might  be found. 

General considerations 

The lateral van der Waals  forces between hydrocarbon 
chains within a crystal structure are rarely so strong, 
compared with end-packing forces, as to make the ef- 
fect of  the end packing completely negligible. This ef- 
fect becomes evident when the total crystal symmetry 
is lower than the chain packing symmetry. Conversely, 
these forces are rarely so weak in comparison with the 
forces in other parts of  the structure that the chains 
are not able to assume a uniform, compact,  stable and 
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